Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data
نویسنده
چکیده
We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using highenergy particles (few GeV/nucleon and higher) whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8–20 min after acceleration and escaping into solar wind) than the main part of smaller energy particles (more than 30–60 min later), causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with “FEP-Search”, used to determine the beginning of a large FEP event. After a positive signal from “FEP-Search”, the following programs start working: “FEP-Research/Spectrum”, and then “FEPResearch/Time of Ejection”, “FEP-Research /Source” and “FEP-Research/Diffusion”, which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: “FEP-Forecasting/Spacecrafts”, “FEPForecasting/Aircrafts”, “FEP-Forecasting/Ground”, which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used “FEP-Alert/Spacecrafts”, “FEP-Alert/ Aircrafts”, “FEP-Alert/Ground”.
منابع مشابه
Space weather and dangerous phenomena on the Earth: principles of great geomagnetic storms forcasting by online cosmic ray data
According to NOAA space weather scales, geomagnetic storms of scales G5 (3-h index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) are dangerous for satellites, aircrafts, and even for technology on the ground (influence on power systems, on spacecraft operations, on HF radio-communications and others). We show on the basis of statistical data, that these geomagnetic storms, mostly accom...
متن کاملPhysical Investigation of Space, Dosimetry of Space Ionizing Ray Effect (Van Allen belts, Galactic Cosmic Rays and Solar particles) and Plotting Dose Map for Satellite Circular Missions
One of the main factors for satellite design is simulating of total ionizing dose due to space ionizing rays in devices used in space. By measurement of induced dose based on available data in different altitudes, expenses of designing, satellite weight and amount of needed fuel will be reduced. Optimum design of satellite for protecting satellite against ionizing radiation has considerable eff...
متن کاملRadiation modeling in the Earth andMars atmospheres using LRO/CRaTER with the EMMREMModule
We expand upon the efforts of Joyce et al. (2013), who computed the modulation potential at the Moon using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on the Lunar Reconnaissance Orbiter (LRO) spacecraft along with data products from the Earth-Moon-Mars Radiation Environment Module (EMMREM). Using the computed modulation potential, we calculate ga...
متن کاملLetter to the Editor Evidence from Voyager and ISEE-3 spacecraft Data for the decay of secondary K-electron capture isotopes during the propagation of cosmic rays in the Galaxy
New data from the cosmic ray experiment on the Voyager spacecraft confirms and extends earlier data from a similar experiment on the ISEE-3 spacecraft which indicates the possibility of the decay of certain K-capture isotopes during the interstellar propagation of galactic cosmic rays. These cosmic ray measurements, along with the cross section measurements, indicate that ∼ 25% of the K-capture...
متن کاملSpace Environment and Evaluation of Typical High Altitude Satellite
The space environment consists mainly of high-energy charged particles, such as protons, electrons and heavy ions. They are originating from several sources including galactic cosmic radiation, solar flares and van Allen belts. High energy electromagnetic radiation and neutrons have also been measured on spacecraft. Although shielding can reduce the effect of space radiation it cannot be elimin...
متن کامل